分享好友 水电电工首页 水电电工分类 切换频道

变频器输出三相不平衡故障分析

2024-08-01 10:001120建材之家

1 引言
在上世纪80、90年代变频器刚开始进入我国市场发展到目前广泛被接受,并应用于冶金,纺织,印染,印刷,烟机生产线,及楼宇,供水等领域。由于变频器确实在电气传动调速方面比传统调速有多方面的优越性,如节能,设备小型化,提高舒适性,如电梯,电车等,可实现自动化控制提高控制精度,提高产品的质量,提高生产效率和产品合格率,变频器今后在我国会日益广泛应用。
变频器由于是电子产品, 理论上它有设计使用年限, 在实际应用中有时要报警出故障, 它的故障概率如图1所示。

 

图1 变频器的故障示意图
实际应用中变频器故障率与正确使用,维护保养和使用环境也有关系。从图1中不难看出变频器维修领域的前景。变频器不平衡输出是变频器常见典型故障,在这里浅谈供广大同行讨论。

2 变频器的逆变器基本工作原理
变频器三相(u v w)交流输出频率波形质量和电压平衡的程度直接影响异步电动机调速运行的状态与电机寿命,更重要是影响变频器的寿命,一台经维修后的变频器,U、V、W三相交流输出的波形符合要求和电压平衡是最基本的。
通常变频器主要有:主电路IGBT,或GTO等功率开关器件构成逆变器给异步电动机提供调压调频的电源,此电源输出的电压或电流及频率由控制回路的控制指令进行控制,而控制指令是由外部的运转指令运算获得,对于需要精密控制速度或快速响应的场合其运算还应包含由变频器主电路和传动系统检测出来的信号以进行闭环控制。保护电路的构成,除应防止因变频器主电路的过电压保护,过电流保护,主电路过热保护引起的故障外,还应保护异步电动机及传动系统等等,因此直接影响U、V、W输出主电路的逆变器故障是至关重要的。
逆变器同整流器相反,逆变器是将直流功率变换为所要频率的交流功率,以所确定的时间使上桥与下桥的6个功率开关器件导通和关断。如图2所示。

图2 逆变器示意图
图2中,S1~S6组成了桥式逆变电路,这6个开关交替接通和关断就可以在输出端U、V、W三相上得到相位互相差2/3π的三相交流电压。由此可见驱动电路中S1~S6开与关时电压波形一致,对输出电压平衡尤其重要。图3是在维修变频器中碰到比较典型的IGBT栅极驱动电路。

图3 典型的栅极驱动电路
栅极驱动电路开通时,输出一个15V的正栅极电压。这个值足够令IGBT产生完全饱和,并使其通态损耗减至最小,同时也限制了短路电流和它所带来的功率应力。当栅极电压处于零时,IGBT处于断态是为了保证IGBT在集电极--发射极电压出现dv/dt噪声时仍保持关断,需要在栅极上施加一个关断偏压,采用反向偏压还可以减少关断损耗。H系列IGBT反向偏压在-5V~15V范围内。
3 变频器输出不平衡及对策
在实际维修中U、V、W输出不平衡可分为三种情况:
(1) 变频器显示器显示:(MISSMG MOTO PHASE)输出缺相,如排除检测电路故障,则通过直接检查IGBT模块和驱动电路,结论为IGBT模块损坏,同时驱动电路也有问题。通过更换IGBT模块和驱动电路上元器件如光耦, PNP,NPN一对驱动晶体管, 电解电容, 稳压管等基本能解决问题。
(2) 变频器输出U、V、W之间相差100V左右,(输出380V为例)驱动电路中S1~S6中间的某一路驱动电路无驱动电压和驱动信号波形, 通过测量输出端子U、V、W—P之间。
(3) U、V、W—N之间直流电压,可找到这一路驱动电压不正常或没有驱动信号波形,它导致U、V、W中的某一相不能正常工作所引起相位差。
解决办法为检查驱动电路电压是否正常,光耦是否坏了,电解电容是否漏液等。通过示波器测量6路波形符合技术要求,问题也就可解决了。
还有另一种现象是变频器U、V、W三相输出交流电压之间相差大于3%,虽然能使用,但是不能长期使用和大负载使用。这主要是驱动电路S1~S6之间主要器件不对称所至,如晶体管的技术参数,稳压管的参数,电容的液枯,漏液和漏电等,6路驱动电路上器件的耗损使其参数上有一定的差别,导致变频器输出U、V、 W之间产生微小的电位差。上述情况虽然能使用,但是技术上是不能容许的。我公司追求精益求精对各种器件通过筛选老化,如晶体管技术参数和稳压管技术参数一致、配对等,保证驱动电路中驱动信号符合技术要求,确保IGBT模块饱和,导通时间上一致是由器件上的质量保证,修理好的变频器在做负载试验时,电动机运转中电动机声音轻盈,在修理前和修理后带相同功率电动机和相同功率负载,后者的电动机三相电流相对要小得多。
4 结束语
变频器输出三相不平衡是变频器的典型常见故障,但是在实践中可能碰到各种不同的复杂问题,希望大家能够共同交流,同时我们也希望更好的为广大客户服务。

举报
收藏 0
打赏 0
评论 0
停送电操作指导书
一、 停送电倒闸操作必须听从调度指挥,并与用户取得联系后方可进行。二、 严格执行“电业安全规程”及“两票”制度执行一人操作,一人监护。三、 送电必须按母线侧刀闸、线路刀闸、油开关顺序操作,停电顺序相反,严禁带负荷拉闸。四、 停电后应立即挂好停电标志牌,严防挂错。五、 停电操作必须戴绝缘手套、穿绝缘鞋,站在绝缘垫上。六、 高压设备均为双回路供电,一回使用一回备用,严格执行双回路送电有

0评论2024-10-0445

DCS控制系统和PLC控制系统的区别
1. DCS是一种“分散式控制系统”,而PLC只是一种(可编程控制器)控制“装置”,两者是“系统”与“装置”的区别。系统可以实现任何装置的功能与协调,PLC装置只实现本单元所具备的功能。  2. 在网络方面,DCS网络是整个系统的中枢神经,和利时公司的MACS系统中的系统网采用的是双冗余的100Mbps的工业以太网,采用的国际标准协议TCP/IP。它是安全可靠双冗余的高速通讯网络,系统的拓展

0评论2024-10-0467

Modbus以及Modbus Plus有什么区别?
Modbus是一种通讯结构,广泛应用在智能设备之间进行主-从方式通讯。一个Modbus信息桢包括从机地址、功能码、数据区和数据校验码。正因为 Modbus仅仅定义了通讯结构,所以可以使用RS232、RS422和RS485端口,可以使用光纤、无线等媒质实现通讯。而 Modbus Plus则是一种典型的令牌环网,完整定义了通讯协议、网络结构、连接电缆(或者光缆)以及安装工具等方面的性能指标。

0评论2024-10-0435

继电保护安全措施票
近几年的继电保护事故通报中,由于漏拆、误拆有关连线或漏退、误投有关压板,造成运行开关误掉闸的现象时有发生。从各起事故中总结出,大部分原因是未认真执行现场继电保护安全措施票。下面对某发电厂具体执行继电保护安全措施票的情况作一介绍。 1 继电保护安全措施票的格式 继电保护安 全措施票的格式是参照《继电保护和电网安全自动装置现场工作保安规定》中的格式,并稍加改动 而形成,主要在内容格式上和审批格式

0评论2024-10-0433

西门子S7-200高速计数器怎么接收伺服驱动器的A相B相Z相差动信号
想利用西门子S7-200PLC的高速计数器,采集伺服驱动器的反馈编码器值,利用高速计数器采集到的值,在程序中比较好控制伺服电机实际运行的位置.答:西门子的200无法直接采集差分信号,因此你需要买个转化板进行转换(即使是224xp也只是支持集电极开路的0到5v,并不是差分)其次每个cpu的循环周期都得10ms左右,如果你在程序中比较实际位置,在进行输出的话很有很大的延迟,除非速度很慢,否则在

0评论2024-10-0460

双电源供电配电图
双电源供电配电图

0评论2024-10-0449

西门子变频器预充电的问题
变频器在放置很长时间不使用时,首次上电需要执行预充电,有人说需要用直流调压器直接接在母线正负极,慢慢升压,我想问的是变频器不是有预充电的吗,为什么还要用直流调压器啊?预充电有预充电电阻和预充电继电器,那么预充电继电器吸合和断开的时间是由什么来控制呢,这个时间可调吗?还有,如果接上输入电源,但是不启动,那么这个时候是不是在执行预充电?另外,如果不执行任何形式的预充电,变频器是在接上输入电源时主

0评论2024-10-0470

51单片机CPU的内部结构及工作原理
从上图中我们可以看到,在虚线框内的就是CPU的内部结构了,8位的MCS-51单片机的CPU内部有数术逻辑单元ALU(Arithmetic Logic Unit)、累加器A(8位)、寄存器B(8位)、程序状态字PSW(8位)、程序计数器PC(有时也称为指令指针,即IP,16位)、地址寄存器AR(16位)、数据寄存器DR(8位)、指令寄存器IR(8位)、指令译码器ID、控制器等部件组成。1、运

0评论2024-10-0474

电功率计算公式的灵活变通
现有一个碳膜电阻,其额定电功率为P=1W(瓦),额定电阻为R=100Ω(欧);知道这两个数值后需要计算出这个电阻的额定电流I以及额定电压U。解题:我们知道电功率公式是P=UI,现在我们知道电功率和电阻,所以电功率公式要转换一下,转换计算公式为:P=I²R;但是我们需要计算的是电流,所以I²=P/R,然后把I开方就计算出了电流:电流:然后我们代入上面的公式中,I=1/10

0评论2024-10-0492

编码器工作原理
绝对脉冲编码器:APC  增量脉冲编码器:SPC  两者一般都应用于速度控制或位置控制系统的检测元件.  旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。  增量型编码器与绝

0评论2024-10-0468