分享好友 水电电工首页 水电电工分类 切换频道

开关电源PCB布局设计技巧

2024-08-02 14:52390建材之家
开关电源的一个常见问题是“不稳定”的开关波形。有些时候,波形抖动处于声波段,磁性元件会产生出音频噪声。如果问题出在印刷电路板的布局上,要找出原因可能会很困难。因此,开关电源设计初期的正确PCB布局就非常关键。

  电源设计者要很好地理解技术细节,以及最终产品的功能需求。因此,从电路板设计项目一开始,电源设计者应就关键性电源布局,与PCB布局设计人员展开密切合作。

  一个好的布局设计可优化电源效率,减缓热应力;更重要的是,它最大限度地减小了噪声,以及走线与元件之间的相互作用。为实现这些目标,设计者必须了解开关电源内部的电流传导路径以及信号流。要实现非隔离开关电源的正确布局设计,务必牢记以下这些设计要素。

  布局规划

  对一块大电路板上的嵌入dc/dc电源,要获得最佳的电压调节、负载瞬态响应和系统效率,就要使电源输出靠近负载器件,尽量减少PCB走线上的互连阻抗和传导压降。确保有良好的空气流,限制热应力;如果能采用强制气冷措施,则要将电源靠近风扇位置。

  另外,大型无源元件(如电感和电解电容)均不得阻挡气流通过低矮的表面封装半导体元件,如功率MOSFET或PWM控制器。为防止开关噪声干扰到系统中的模拟信号,应尽可能避免在电源下方布放敏感信号线;否则,就需要在电源层和小信号层之间放置一个内部接地层,用做屏蔽。

  关键是要在系统早期设计和规划阶段,就筹划好电源的位置,以及对电路板空间的需求。有时设计者会无视这种忠告,而把关注点放在大型系统板上那些更“重要”或“让人兴奋”的电路。电源管理被看作事后工作,随便把电源放在电路板上的多余空间上,这种做法对高效率而可靠的电源设计十分不利。

  对于多层板,很好的方法是在大电流的功率元件层与敏感的小信号走线层之间布放直流地或直流输入/输出电压层。地层或直流电压层提供了屏蔽小信号走线的交流地,使其免受高噪声功率走线和功率元件的干扰。

  作为一般规则,多层PCB板的接地层或直流电压层均不应被分隔开。如果这种分隔不可避免,就要尽量减少这些层上走线的数量和长度,并且走线的布放要与大电流保持相同的方向,使影响最小化。

  图1a和1c分别是六层和四层开关电源PCB的不良层结构。这些结构将小信号层夹在大电流功率层和地层之间,因此增加了大电流/电压功率层与模拟小信号层之间耦合的电容噪声。

  图中的1b和1d则分别是六层和四层PCB设计的良好结构,有助于最大限度减少层间耦合噪声,地层用于屏蔽小信号层。要点是:一定要挨着外侧功率级层放一个接地层,外部大电流的功率层要使用厚铜箔,尽量减少PCB传导损耗和热阻。

  功率级的布局

  开关电源电路可以分为功率级电路和小信号控制电路两部分。功率级电路包含用于传输大电流的元件,一般情况下,要首先布放这些元件,然后在布局的一些特定点上布放小信号控制电路。

  大电流走线应短而宽,尽量减少PCB的电感、电阻和压降。对于那些有高di/dt脉冲电流的走线,这方面尤其重要。

  图2给出了一个同步降压转换器中的连续电流路径和脉冲电流路径,实线表示连续电流路径,虚线代表脉冲(开关)电流路径。脉冲电流路径包括连接到下列元件上的走线:输入去耦陶瓷电容CHF,上部控制FETQT以及下部同步FETQB,还有选接的并联肖特基二极管。

  图3a给出了高di/dt电流路径中的PCB寄生电感。由于存在寄生电感,因此脉冲电流路径不仅会辐射磁场,而且会在PCB走线和MOSFET上产生大的电压振铃和尖刺。为尽量减小PCB电感,脉冲电流回路(所谓热回路)布放时要有最小的圆周,其走线要短而宽。

  高频去耦电容CHF应为0.1μF~10μF,X5R或X7R电介质的陶瓷电容,它有极低的ESL(有效串联电感)和ESR(等效串联电阻)。较大的电容电介质(如Y5V)可能使电容值在不同电压和温度下有大的下降,因此不是CHF的最佳材料。

  图3b为降压转换器中的关键脉冲电流回路提供了一个布局例子。为了限制电阻压降和过孔数量,功率元件都布放在电路板的同一面,功率走线也都布在同一层上。当需要将某根电源线走到其它层时,要选择在连续电流路径中的一根走线。当用过孔连接大电流回路中的PCB层时,要使用多个过孔,尽量减小阻抗。

  图4显示的是升压转换器中的连续电流回路与脉冲电流回路。此时,应在靠近MOSFETQB与升压二极管D的输出端放置高频陶瓷电容CHF。

  图5显示的是升压转换器中的热回路与寄生PCB电感(a);为减少热回路面积而建议采用的布局(b)

  图5是升压转换器中脉冲电流回路的一个布局例子。此时关键在于尽量减小由开关管QB、整流二极管D和高频输出电容CHF形成的回路。图6提供了一个同步降压电路的例子,它强调了去耦电容的重要性。图6a是一个双相12VIN、2.5VOUT/30A(最大值)的同步降压电源,使用了LTC3729双相单VOUT控制器IC,在无负载时,开关结点SW1和SW2的波形以及输出电感电流都是稳定的(图6b)。但如果负载电流超过13A,SW1结点的波形就开始丢失周期。负载电流更高时,问题会更恶化(图6c)。

  在各个通道的输入端增加两只1μF的高频陶瓷电容,就可以解决这个问题,电容隔离开了每个通道的热回路面积,并使之最小化。即使在高达30A的最大负载电流下,开关波形仍很稳定。

  高DV/DT开关区

  图2和图4中,在VIN(或VOUT)与地之间的SW电压摆幅有高的dv/dt速率。这个结点上有丰富的高频噪声分量,是一个强大的EMI噪声源。为了尽量减小开关结点与其它噪声敏感走线之间的耦合电容,你可能会让SW铜箔面积尽可能小。但是,为了传导大的电感电流,并且为功率MOSFET管提供散热区,SW结点的PCB区域又不能够太小。一般建议在开关结点下布放一个接地铜箔区,提供额外的屏蔽。

  如果设计中没有用于表面安装功率MOSFET与电感的散热器,则铜箔区必须有足够的散热面积。对于直流电压结点(如输入/输出电压与电源地),合理的方法是让铜箔区尽可能大。

  多过孔有助于进一步降低热应力。要确定高dv/dt开关结点的合适铜箔区面积,就要在尽量减小dv/dt相关噪声与提供良好的MOSFET散热能力两者间做一个设计平衡。

  功率焊盘形式

  注意功率元件的焊盘形式,如低ESR电容、MOSFET、二极管和电感。

  对于去耦电容,正负极过孔应尽量互相靠近,以减少PCB的ESL。这对低ESL电容尤其有效。小容值低ESR的电容通常较贵,不正确的焊盘形式及不良走线都会降低它们的性能,从而增加整体成本。通常情况下,合理的焊盘形式能降低PCB噪声,减小热阻,并最大限度降低走线阻抗以及大电流元件的压降。

  大电流功率元件布局时有一个常见的误区,那就是不正确地采用了热风焊盘(thermalrelief)。非必要情况下使用热风焊盘,会增加功率元件之间的互连阻抗,从而造成较大的功率损耗,降低小ESR电容的去耦效果。如果在布局时用过孔来传导大电流,要确保它们有充足的数量,以减少阻抗。此外,不要对这些过孔使用热风焊盘。

  控制电路布局

  使控制电路远离高噪声的开关铜箔区。对降压转换器,好的办法是将控制电路置于靠近VOUT+端,而对升压转换器,控制电路则要靠近VIN+端,让功率走线承载连续电流。

  如果空间允许,控制IC与功率MOSFET及电感(它们都是高噪声高热量元件)之间要有小的距离(0.5英寸~1英寸)。如果空间紧张,被迫将控制器置于靠近功率MOSFET与电感的位置,则要特别注意用地层或接地走线,将控制电路与功率元件隔离开来。

  控制电路应有一个不同于功率级地的独立信号(模拟)地。如果控制器IC上有独立的SGND(信号地)和PGND(功率地)引脚,则应分别布线。对于集成了MOSFET驱动器的控制IC,小信号部分的IC引脚应使用SGND。

  信号地与功率地之间只需要一个连接点。合理方法是使信号地返回到功率地层的一个干净点。只在控制器IC下连接两种接地走线,就可以实现两种地。

  控制IC的去耦电容应靠近各自的引脚。为尽量减少连接阻抗,好的方法是将去耦电容直接接到引脚上,而不通过过孔。

  回路面积与串扰

  两个或多个邻近导体可以产生容性耦合。一个导体上的高dv/dt会通过寄生电容,在另一个导体上耦合出电流。为减少功率级对控制电路的耦合噪声,高噪声的开关走线要远离敏感的小信号走线。如果可能的话,要将高噪声走线与敏感走线布放在不同的层,并用内部地层作为噪声屏蔽。

  空间允许的话,控制IC要距离功率MOSFET和电感有一个小的距离(0.5英寸~1英寸),后者既有大噪声又发热。

举报
收藏 0
打赏 0
评论 0
停送电操作指导书
一、 停送电倒闸操作必须听从调度指挥,并与用户取得联系后方可进行。二、 严格执行“电业安全规程”及“两票”制度执行一人操作,一人监护。三、 送电必须按母线侧刀闸、线路刀闸、油开关顺序操作,停电顺序相反,严禁带负荷拉闸。四、 停电后应立即挂好停电标志牌,严防挂错。五、 停电操作必须戴绝缘手套、穿绝缘鞋,站在绝缘垫上。六、 高压设备均为双回路供电,一回使用一回备用,严格执行双回路送电有

0评论2024-10-0445

DCS控制系统和PLC控制系统的区别
1. DCS是一种“分散式控制系统”,而PLC只是一种(可编程控制器)控制“装置”,两者是“系统”与“装置”的区别。系统可以实现任何装置的功能与协调,PLC装置只实现本单元所具备的功能。  2. 在网络方面,DCS网络是整个系统的中枢神经,和利时公司的MACS系统中的系统网采用的是双冗余的100Mbps的工业以太网,采用的国际标准协议TCP/IP。它是安全可靠双冗余的高速通讯网络,系统的拓展

0评论2024-10-0467

Modbus以及Modbus Plus有什么区别?
Modbus是一种通讯结构,广泛应用在智能设备之间进行主-从方式通讯。一个Modbus信息桢包括从机地址、功能码、数据区和数据校验码。正因为 Modbus仅仅定义了通讯结构,所以可以使用RS232、RS422和RS485端口,可以使用光纤、无线等媒质实现通讯。而 Modbus Plus则是一种典型的令牌环网,完整定义了通讯协议、网络结构、连接电缆(或者光缆)以及安装工具等方面的性能指标。

0评论2024-10-0435

继电保护安全措施票
近几年的继电保护事故通报中,由于漏拆、误拆有关连线或漏退、误投有关压板,造成运行开关误掉闸的现象时有发生。从各起事故中总结出,大部分原因是未认真执行现场继电保护安全措施票。下面对某发电厂具体执行继电保护安全措施票的情况作一介绍。 1 继电保护安全措施票的格式 继电保护安 全措施票的格式是参照《继电保护和电网安全自动装置现场工作保安规定》中的格式,并稍加改动 而形成,主要在内容格式上和审批格式

0评论2024-10-0433

西门子S7-200高速计数器怎么接收伺服驱动器的A相B相Z相差动信号
想利用西门子S7-200PLC的高速计数器,采集伺服驱动器的反馈编码器值,利用高速计数器采集到的值,在程序中比较好控制伺服电机实际运行的位置.答:西门子的200无法直接采集差分信号,因此你需要买个转化板进行转换(即使是224xp也只是支持集电极开路的0到5v,并不是差分)其次每个cpu的循环周期都得10ms左右,如果你在程序中比较实际位置,在进行输出的话很有很大的延迟,除非速度很慢,否则在

0评论2024-10-0460

双电源供电配电图
双电源供电配电图

0评论2024-10-0449

西门子变频器预充电的问题
变频器在放置很长时间不使用时,首次上电需要执行预充电,有人说需要用直流调压器直接接在母线正负极,慢慢升压,我想问的是变频器不是有预充电的吗,为什么还要用直流调压器啊?预充电有预充电电阻和预充电继电器,那么预充电继电器吸合和断开的时间是由什么来控制呢,这个时间可调吗?还有,如果接上输入电源,但是不启动,那么这个时候是不是在执行预充电?另外,如果不执行任何形式的预充电,变频器是在接上输入电源时主

0评论2024-10-0470

51单片机CPU的内部结构及工作原理
从上图中我们可以看到,在虚线框内的就是CPU的内部结构了,8位的MCS-51单片机的CPU内部有数术逻辑单元ALU(Arithmetic Logic Unit)、累加器A(8位)、寄存器B(8位)、程序状态字PSW(8位)、程序计数器PC(有时也称为指令指针,即IP,16位)、地址寄存器AR(16位)、数据寄存器DR(8位)、指令寄存器IR(8位)、指令译码器ID、控制器等部件组成。1、运

0评论2024-10-0474

电功率计算公式的灵活变通
现有一个碳膜电阻,其额定电功率为P=1W(瓦),额定电阻为R=100Ω(欧);知道这两个数值后需要计算出这个电阻的额定电流I以及额定电压U。解题:我们知道电功率公式是P=UI,现在我们知道电功率和电阻,所以电功率公式要转换一下,转换计算公式为:P=I²R;但是我们需要计算的是电流,所以I²=P/R,然后把I开方就计算出了电流:电流:然后我们代入上面的公式中,I=1/10

0评论2024-10-0492

编码器工作原理
绝对脉冲编码器:APC  增量脉冲编码器:SPC  两者一般都应用于速度控制或位置控制系统的检测元件.  旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。  增量型编码器与绝

0评论2024-10-0468