分享好友 水电电工首页 水电电工分类 切换频道

断路器防跳回路的作用及典型接线和应用注意事项

2024-09-03 18:181100建材之家

    断路器是电力系统中重要的一次设备。目前国内生产厂家很多, 其灭弧原理、操作机构和控制回路也是多种多样, 各有特点, 尤其是防跳回路的设计更是千差万别。如何把控制回路和防跳回路很好地结合起来, 是工程技术人员最关心的问题。本文根据多年的现场经验和应用实践, 对目前比较流行的防跳回路接线和原理给予介绍, 并就应用中出现的问题进行探讨。
    1 防跳回路的作用
    a1 防止因控制开关或自动装置的合闸接点未能及时返回(例如操作人员未松开手柄, 自动装置的合闸接点粘连) 而正好合闸在故障线路和设备上, 造成断路器连续合切现象。
    b1 对于电流启动、电压保持式的电气防跳回路还有一项重要功能, 就是防止因跳闸回路的断路器辅助接点调整不当(变位过慢) , 造成保护出口接点先断弧而烧毁的现象。这种现象对于微机保护装置来说是不可容忍的, 而这一点却常被人们忽视。
    2 防跳回路的典型接线
    常用防跳回路有串联式防跳回路、并联式防跳回路、弹簧储能式防跳回路、跳闸线圈辅助接点式防跳回路等。国产断路器多采用串联式防跳回路
    断路器多采用并联式防跳回路。其中串联式防跳回路最合理, 应用也最广泛, 它除具有防跳功能外, 还具有防止保护出口接点断弧而烧毁的优点, 这也是
    应用微机保护装置不可缺少的技术条件。其他防跳回路只具有防止断路器跳跃的功能, 跳闸线圈辅助接点式防跳回路在执行防跳功能时, 跳闸线圈长期带电有可能烧毁。
    2.1 串联式防跳回路
    所谓串联式防跳, 即防跳继电器TBJ 由电流启动, 该线圈串联在断路器的跳闸回路中。电压保持线圈与断路器的合闸线圈并联。当合闸到故障线路或
    设备上, 则继电保护动作, 保护出口接点TJ 闭合,此时防跳继电器TBJ 的电流线圈启动, 同时断路器跳闸, TBJ 的常闭接点断开合闸回路, 另一对常开接点接通电压线圈并保持。若此时SK (5—8) 或HJ 接点不能返回而继续发出合闸命令, 由于合闸回路已被断开, 断路器不能合闸, 从而达到防跳目的。另外,当TBJ 启动后, 其并联于保护出口的常开接点闭合并自保, 直到“逼迫”断路器常开辅助接点变位为止,有效地防止了保护出口接点断弧。串联式防跳回路,如图1 所示。

    2.2 并联式防跳回路
    所谓并联式防跳, 即防跳继电器KO 的电压线圈并联在断路器的合闸回路上(如图2 所示)。例如一个持久的合闸命令存在时, 合闸整流桥输出经Y3, S2, S3, S1, KO (2—1) 接通。断路器合闸后, 并联在合闸回路的辅助接点S3′闭合, 启动防跳继电器KO , KO 接点即由2—1 位置切换到4—1 位置, 断开合闸回路并保持。若此时线路或设备故障, 继电保护动作跳闸。但由于合闸回路已可靠断开, 从而防止了开关跳跃。

    2.3 弹簧储能式防跳回路
    如图3, 当一个持久合闸命令到来时, 合闸电流经SK 或HJ 通过S3, K1, K1, S2, S1, YA 1 接通开关合闸。合闸后弹簧机构开始储能, 并联在合闸回路的弹簧储能辅助开关S3 常闭点接通防跳继电器K1, K1 的常开点自保, 常闭点断开合闸回路。若此时线路或设备故障, 继电保护动作跳闸, 由于合闸回路已可靠断开, 有效地防止了开关跳跃。

    2.4 跳闸线圈辅助接点式防跳回路
    如图4 所示, 在合闸过程中出现短路故障时, 保护装置使断路器跳闸, 由跳闸线圈操动的常开辅助接点TQ 2 闭合, 保持跳闸线圈继续通电。跳闸线圈的常闭辅助接点TQ 1 断开, 切断合闸回路, 如果此时合闸命令继续存在, 也不会使断路器再次合闸。合闸命令解除后, 跳闸线圈失电, 接线恢复原来状态。

    3 应用过程中需注意的问题
    a1 对于没有防跳装置的断路器应加装电气防跳回路, 串联式防跳回路性能最优, 应优先采用, 可收到一举两得的效果。
    b1 串联式防跳继电器的启动电流线圈应按灵敏度不小于2 选型, 且安装时应注意电流线圈与电压线圈的极性一致。
    c1 当保护装置内部和开关操作机构都有电气防跳回路时, 推荐采用保护装置内部的防跳回路, 而将操作机构中的防跳回路甩掉, 这样使用可靠, 维护方便。
    d1 对于弹簧储能式操作机构, 有人认为其储能机构本身已具有防跳功能, 似乎不必再加电器防跳回路。但储能机构并不能防止因合闸接点粘连而造成的开关跳跃, 又没有防止保护出口接点断弧烧毁的功能, 所以还是加装电气防跳回路为好。

举报
收藏 0
打赏 0
评论 0
停送电操作指导书
一、 停送电倒闸操作必须听从调度指挥,并与用户取得联系后方可进行。二、 严格执行“电业安全规程”及“两票”制度执行一人操作,一人监护。三、 送电必须按母线侧刀闸、线路刀闸、油开关顺序操作,停电顺序相反,严禁带负荷拉闸。四、 停电后应立即挂好停电标志牌,严防挂错。五、 停电操作必须戴绝缘手套、穿绝缘鞋,站在绝缘垫上。六、 高压设备均为双回路供电,一回使用一回备用,严格执行双回路送电有

0评论2024-10-0451

DCS控制系统和PLC控制系统的区别
1. DCS是一种“分散式控制系统”,而PLC只是一种(可编程控制器)控制“装置”,两者是“系统”与“装置”的区别。系统可以实现任何装置的功能与协调,PLC装置只实现本单元所具备的功能。  2. 在网络方面,DCS网络是整个系统的中枢神经,和利时公司的MACS系统中的系统网采用的是双冗余的100Mbps的工业以太网,采用的国际标准协议TCP/IP。它是安全可靠双冗余的高速通讯网络,系统的拓展

0评论2024-10-0476

Modbus以及Modbus Plus有什么区别?
Modbus是一种通讯结构,广泛应用在智能设备之间进行主-从方式通讯。一个Modbus信息桢包括从机地址、功能码、数据区和数据校验码。正因为 Modbus仅仅定义了通讯结构,所以可以使用RS232、RS422和RS485端口,可以使用光纤、无线等媒质实现通讯。而 Modbus Plus则是一种典型的令牌环网,完整定义了通讯协议、网络结构、连接电缆(或者光缆)以及安装工具等方面的性能指标。

0评论2024-10-0444

继电保护安全措施票
近几年的继电保护事故通报中,由于漏拆、误拆有关连线或漏退、误投有关压板,造成运行开关误掉闸的现象时有发生。从各起事故中总结出,大部分原因是未认真执行现场继电保护安全措施票。下面对某发电厂具体执行继电保护安全措施票的情况作一介绍。 1 继电保护安全措施票的格式 继电保护安 全措施票的格式是参照《继电保护和电网安全自动装置现场工作保安规定》中的格式,并稍加改动 而形成,主要在内容格式上和审批格式

0评论2024-10-0442

西门子S7-200高速计数器怎么接收伺服驱动器的A相B相Z相差动信号
想利用西门子S7-200PLC的高速计数器,采集伺服驱动器的反馈编码器值,利用高速计数器采集到的值,在程序中比较好控制伺服电机实际运行的位置.答:西门子的200无法直接采集差分信号,因此你需要买个转化板进行转换(即使是224xp也只是支持集电极开路的0到5v,并不是差分)其次每个cpu的循环周期都得10ms左右,如果你在程序中比较实际位置,在进行输出的话很有很大的延迟,除非速度很慢,否则在

0评论2024-10-0472

双电源供电配电图
双电源供电配电图

0评论2024-10-0455

西门子变频器预充电的问题
变频器在放置很长时间不使用时,首次上电需要执行预充电,有人说需要用直流调压器直接接在母线正负极,慢慢升压,我想问的是变频器不是有预充电的吗,为什么还要用直流调压器啊?预充电有预充电电阻和预充电继电器,那么预充电继电器吸合和断开的时间是由什么来控制呢,这个时间可调吗?还有,如果接上输入电源,但是不启动,那么这个时候是不是在执行预充电?另外,如果不执行任何形式的预充电,变频器是在接上输入电源时主

0评论2024-10-0470

51单片机CPU的内部结构及工作原理
从上图中我们可以看到,在虚线框内的就是CPU的内部结构了,8位的MCS-51单片机的CPU内部有数术逻辑单元ALU(Arithmetic Logic Unit)、累加器A(8位)、寄存器B(8位)、程序状态字PSW(8位)、程序计数器PC(有时也称为指令指针,即IP,16位)、地址寄存器AR(16位)、数据寄存器DR(8位)、指令寄存器IR(8位)、指令译码器ID、控制器等部件组成。1、运

0评论2024-10-0480

电功率计算公式的灵活变通
现有一个碳膜电阻,其额定电功率为P=1W(瓦),额定电阻为R=100Ω(欧);知道这两个数值后需要计算出这个电阻的额定电流I以及额定电压U。解题:我们知道电功率公式是P=UI,现在我们知道电功率和电阻,所以电功率公式要转换一下,转换计算公式为:P=I²R;但是我们需要计算的是电流,所以I²=P/R,然后把I开方就计算出了电流:电流:然后我们代入上面的公式中,I=1/10

0评论2024-10-0495

编码器工作原理
绝对脉冲编码器:APC  增量脉冲编码器:SPC  两者一般都应用于速度控制或位置控制系统的检测元件.  旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。  增量型编码器与绝

0评论2024-10-0471